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Abstract. Boolean networks with canalizing functions are used to model gene regulatory networks. In
order to learn how such networks may behave under evolutionary forces, we simulate the evolution of a
single Boolean network by means of an adaptive walk, which allows us to explore the fitness landscape.
Mutations change the connections and the functions of the nodes. Our fitness criterion is the robustness
of the dynamical attractors against small perturbations. We find that with this fitness criterion the global
maximum is always reached and that there is a huge neutral space of 100% fitness. Furthermore, in spite
of having such a high degree of robustness, the evolved networks still share many features with “chaotic”
networks.

PACS. 87.23.Kg Dynamics of evolution – 89.75.Hc Networks and genealogical trees – 87.15.Aa Theory
and modeling; computer simulation

1 Introduction

In a gene regulatory network a protein, which is encoded
by a gene, can regulate the expression of one or several
other genes, usually in cooperation with other proteins.
This results in a complex network of interacting units. In
1969, Stuart Kauffman was the first one to model such a
gene regulatory network by means of a random Boolean
network [1,2]. In this simple model each gene i can be
in two different states, σi = 1 or 0. This means that the
gene is either expressed or not expressed. Each gene is
represented by a node and each interaction by a directed
connection between two nodes. Each node i receives input
from Ki randomly chosen other nodes, and its state at
time step t is a function of the states of its input nodes at
time step t − 1,

σi(t) = fi[σi1(t − 1), σi2(t − 1), ..., σiKi
(t − 1)]. (1)

Starting from any of the 2N possible network states, where
N is the number of nodes, the network eventually settles
on a periodic attractor. Usually, there are different at-
tractors with different basins of attraction (i.e., the set of
states leading to and lying on the attractor) and attractor
lengths (i.e., the number of states on the attractor).

Random Boolean networks can be in two phases, the
frozen and the chaotic phase, that differ greatly in the dy-
namical behavior of the networks. A network is said to be
in the frozen phase if a perturbation at one node propa-
gates during one time step on an average to less than one
other node. In the chaotic phase the difference between
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two almost identical states increases exponentially fast,
because a perturbation propagates on an average to more
than one node during one time step. Kauffman argued
that a real genetic regulatory system should be critical,
that is on or near the boundary between the two phases,
thus being both stable and evolvable [3].

As pointed out in [4], the Boolean idealization seems
to be suitable to model the overall dynamical properties of
gene regulatory networks. The segment polarity network
of Drosophila melanogaster [5] and the yeast cell-cycle
network [6], for example, were modeled using Boolean dy-
namics of the genes, and both models show attractors that
agree with the biological sequence of events. Additionally,
the analysis of the data for over 150 gene regulatory sys-
tems of eukaryotes revealed a strong bias towards canal-
izing functions (defined below) [7]. However, while gene
regulatory networks may show the same type of dynamics
as random Boolean networks, the structure of gene regula-
tory networks is very different and far from random. They
have attractors that are far more robust and have much
larger basins of attraction than random Boolean networks.
Biological networks are shaped by their evolutionary his-
tory, and they are designed to execute certain tasks. Nei-
ther of these features is included in the original models.

In this article, we want to address the first of these
two issues and investigate how initially random Boolean
networks change under the evolutionary forces of muta-
tion and selection. The simulation of evolution in Boolean
networks has a long history, and several approaches have
been taken. In [8], networks with connectivities of K = 2
and K = 10 are evolved by creating mutants through the
rewiring of connections or the changing of bits of Boolean
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functions. For every network, attractors are found by let-
ting the network run from a predetermined number of ran-
dom initial states, and these attractors are compared to
a “target” state. The fitness of each network is defined
as the mean Hamming distance of the target state to the
attractor closest to it. The fittest network is used to gener-
ate the mutants of the next generation. During evolution,
fitness approaches an asymptotic value that is less than
the global maximum.

In [9], the evolution of the connectivity of a single
Boolean network is studied. A random Boolean network
with K = 1 is started from a random initial state. When
it reaches an attractor, a daughter network is created by
adding and/or removing a connection at random. If the
daughter network reaches the same attractor after start-
ing from the same initial state the simulation is contin-
ued with the daughter network, otherwise with the mother
network. The evolution of the network connectivity shows
“punctuated equilibrium”, as observed in the fossil record,
with the network “species” with high K values having
extremely long life times. The continuation of this work
with threshold networks [10] reveals that the evolved net-
works have shorter attractors and a larger frozen compo-
nent than random networks.

In [11], the influence of noise on the evolution of
Boolean networks is studied. A population of Boolean net-
works is evolved under the selection criterion of matching a
given target pattern while it is subjected to different kinds
of noise. Mutations consist in redirecting a randomly cho-
sen link or in changing a randomly chosen update function.
Noise exclusion as well as “noise imprinting” is observed.
Noise in the fitness measurement makes adaptive evolu-
tion impossible if the noise level exceeds a critical value.

In [12], an economic network is modeled where the
nodes represent competing agents, and a game determines
the process of evolution. In every time step, the winning
nodes are those that have the same state as the minority
of the nodes. The node that has lost the game most often
during a certain time is assigned a new random Boolean
function. The network evolves to a stationary state “at
the edge of chaos”. Further studies of the model [13]
showed that the evolved networks are highly canalized.
Other models that evolve to a critical state are studied
in [14–16].

In our work reported in this paper, we simulated the
evolution of a single canalizing Boolean network (as op-
posed to the simulation of a whole population of networks
as for example in [11]). The mutations affect the connec-
tions and the update functions of the nodes. Compared
to the simulations in [8–16], fitness can be changed by
more types of mutations in our model. We let the networks
evolve freely under a biologically motivated fitness crite-
rion without imposing any “target properties” to find net-
work topologies that are evolutionary robust. The fitness
criterion is robustness against small perturbations. We in-
terpret robustness as the ability of a system to maintain
function in the face of perturbations/noise (in contrast to
mutational robustness considered for example in [9,10]).
Robustness is of great importance in biology as a cell must

continue to function and to pass on its genetic material in
the face of fluctuations e.g. of the protein concentrations
or of the nutrient levels. We simulated an evolutionary
process that is a so-called adaptive walk. This is a hill
climbing process that leads to a local fitness maximum
and thus can yield insight into the fitness landscape of a
system. Our main finding is that the maximum possible
fitness value is always reached during this process, and
that there is a huge plateau with this fitness value that
spans the network configuration space.

In the next section, we define the set of canalizing func-
tions we used in our simulations. Then, the algorithm for
the adaptive walk is described in Section 3. In Section 4,
the results of the simulations are given. The last two sec-
tions include a discussion of these results and a final sum-
mary.

2 Canalizing functions

A function is called canalizing if at least one value of one
input can determine the output of the function, indepen-
dently of the other inputs. This means that the output
is fixed when the canalizing variable takes the canalizing
value. Here we choose the set of canalizing functions used
by Moreira and Amaral [17], where frozen functions are a
special case of canalizing functions. Four classes of func-
tions are distinguished:

F (σ1, σ2, ...) = σ1 OR G(σ2, ...) (2.1)
F (σ1, σ2, ...) = (NOT σ1) AND G(σ2, ...) (2.2)
F (σ1, σ2, ...) = (NOT σ1) OR G(σ2, ...) (2.3)
F (σ1, σ2, ...) = σ1 AND G(σ2, ...) (2.4)

where σ1 is the canalizing variable and G is a random
Boolean function that depends on the remaining variables.

For classes (2.1) and (2.2), the canalizing value is 1,
classes (2.3) and (2.4) have the canalizing value 0. The
canalized value (the value the function yields when the
canalizing variable takes the canalizing value) is 1 for
classes (2.1) and (2.3) and 0 for classes (2.2) and (2.4).

In their paper Moreira and Amaral determine the con-
ditions under which networks with canalizing functions
are critical. If all functions mentioned above are chosen
with equal probability, the critical number of inputs per
node is Kc = 3.

Kauffman et al. found that networks with canalizing
rules are remarkably stable compared to those with ran-
dom Boolean functions [18].

3 Computer simulations

The adaptive walk starts with a randomly created net-
work. The fitness of this network is determined, and then
a mutation is performed in the network. The mutation is
accepted if it does not lower the fitness. Neutral mutations
are those that do not change the fitness value. Then the
next mutation is attempted. This procedure is continued
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until a certain stopping condition is satisfied. In detail the
algorithm is defined as follows:

1. A network with N nodes is generated. Each node is
assigned a random initial value (0 or 1) and K ran-
domly chosen input nodes. (The number of inputs is
the same for all nodes in the beginning, but later on
different nodes can have different K values.) The first
input of each node is the canalizing one. Then a ran-
dom Boolean function G with K−1 inputs is generated
for each node by choosing 0 or 1 with the same prob-
ability as output for every input combination. Last,
one of the four classes of canalizing functions (2.1) to
(2.4) is assigned to each node with equal probability.
We thus have obtained a network realization.

2. To determine the fitness (that is the robustness) of the
network, three steps are necessary. First the network
is updated according to equation (1) until it reaches
an attractor. Then the value of each node is flipped
one after the other, and it is counted for how many of
these flips the network returns to the same attractor.
This can happen at most N times. The fitness value
is the percentage of times the dynamics return to the
given attractor after flipping a node.

3. Then a mutation is performed at a randomly chosen
node. Each of the following four mutations occurs with
probability 1/4:
(a) a connection is added; (the maximum number of

inputs to a node is limited to Kmax = 10 due to
computational restrictions.)

(b) a connection is deleted;
(c) a connection is redirected;
(d) the canalizing function is changed.
Mutations (b), (c) and (d) fail if K = 0 for the chosen
node. Mutation (a) fails if K = 10. In these situations,
it is attempted up to N2 times to find a node for which
the mutation does not fail. If no such node is found,
a new mutation is chosen with equal probability from
the four possible ones. Note that whenever a connec-
tion is added or deleted, the random Boolean part of
the update function has to be newly generated. If a
node looses the connection to its canalizing input the
next input is chosen to be canalizing.
During the first simulation runs, we worked with a
value Kmax = 7, but as all the networks reached
this number of inputs during evolution, we then chose
Kmax = 10. Because the simulations become slower
with increasing K, we did not go beyond this value.

4. The adaptive walk is stopped when one of the following
three events occurs:
(a) a certain number of attempted mutations is ex-

ceeded and no mutation was accepted; (This would
happen for example if the network was on a local
maximum in the fitness landscape and all muta-
tions decreased the fitness. Since the simulations
show that the networks never get stuck at local
maxima, the threshold can be chosen such that this
stopping criterion is never fulfilled.)

(b) trying to add a link failed N times because K =
Kmax;
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Fig. 1. The initial fitness of networks with different N and
Kini. For comparison the initial fitness of a random network
with all Boolean functions is plotted for N = 50 and Kini = 1
to 3.

(c) a certain number of accepted mutations is reached.
(This number was 100 000 or 200 000 in the simu-
lations evaluated below.)

This is the basic algorithm. Changes to it are mentioned
where the according variations are discussed in the results
section.

4 Results

We have simulated adaptive walks for networks with N =
20, 30, 50, 70, 80 and 100 nodes and for initial connectiv-
ities of Kini = 1, 2, 3, 4, 5 and 6.

In the next two subsections we study the path taken by
the networks until they reach maximum fitness. From Sec-
tion 4.3 on we examine also the evolution of the networks
after reaching maximum fitness. In the figures that deal
with the evolution of the networks to the fitness maximum,
every data point is averaged over at least 5000 adaptive
walks. Exceptions are the simulations for N = 100, K = 5
with only 3600 runs, the networks larger than 100 nodes
in Figure 1, and the simulations without neutral muta-
tions that needed less runs (Fig. 3). In the figures that
deal with the evolution of the networks after they have
reached maximum fitness every curve corresponds to one
adaptive walk.

Therewith the first remarkable result is already stated:
all networks always reach maximum fitness, independently
of the initial conditions.

4.1 Initial fitness

Figure 1 shows the fitness of the networks generated at the
beginning of the simulations. One can see that the initial
fitness decreases with increasing Kini and N . For compari-
son the fitness of a random Boolean network with all possi-
ble Boolean functions (and not just the canalizing ones),
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Fig. 2. The number of attempted mutations (left) and ac-
cepted mutations (right) needed until the network reaches
100% fitness, as function of the initial connectivity.

N = 50 and Kini = 1, 2 and 3 is plotted. (Simulations
with higher initial K are too time-consuming because of
the extremely long attractors.) One can see that networks
with all possible Boolean functions are less stable than
those with only canalizing functions. Furthermore, there
is a clear decline of the fitness at Kini = 2, beyond which
this kind of network becomes chaotic. For canalizing net-
works, the critical number of inputs per node is Kc = 3,
and the curves for the largest three N values intersect at
this point. However the network sizes considered in the
rest of this paper (up to N = 100) are too small to see a
clear phase transition.

4.2 Length of adaptive walk

In this subsection we study the path taken by the net-
works until they reach the global fitness maximum. As
stated before, all networks reach maximum fitness, local
maxima are not found. In the figure caption, the attempted
mutations comprise all mutations that were performed,
whether they were accepted or not. The accepted muta-
tions are those that increase or do not change the fitness,
that is, the ones that determine the path of the networks
through the fitness landscape. Maximum fitness is reached
after only a few evolutionary steps for all network realiza-
tions. Figure 2 (right side) shows that the number of 40
accepted mutations is never exceeded for the network sizes
considered. This number is so small that the K values of
the networks do not change much until the arrival at the
fitness maximum. In general, for larger N more mutations
are necessary to reach maximum fitness. With increasing
N , both sets of curves appear to develop a local maximum
at the critical value Kini = 3. It seems that networks that
start at the critical point have a longer path to the global
peak of the fitness landscape than mostly frozen or slightly
chaotic networks. While the number of attempted muta-
tions (left curve) increases again for Kini values larger
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Fig. 3. The percentage of accepted mutations until the arrival
at the global maximum. The upper four curves were obtained
with our usual simulations. The lower two curves were obtained
with modified simulations where neutral mutations were not
accepted but only mutations that increased the fitness.

than 4, this is not so evident for the number of accepted
mutations. The last two points of the curve for N = 100
suggest that for larger N there might be also an increase
in the number of accepted mutations with increasing Kini.

In Figure 3, the ratio of accepted to attempted muta-
tions is shown for different network sizes and connectiv-
ities. For Kini > 2 finding mutations that are accepted
is more difficult when the networks are larger, and the
percentage of accepted mutations shrinks with growing
initial connectivity. The comparatively low percentage of
accepted mutations at Kini = 1 can be easily understood
since the initial fitness is already close to 100%. Figure 3
shows also two curves for N = 50 and 100 from simu-
lations where neutral mutations (mutations that do not
change the fitness) were not accepted. Thus the total num-
ber of accepted mutations is smaller in this case. In this
respect the path to the global maximum is shorter. But
since a higher number of attempted mutations is needed,
the adaptive walk is less efficient for Kini < 5, as one can
see in Figure 3. The percentage of accepted mutations is
much smaller for adaptive walks without neutral muta-
tions. More evolutionary time is needed to take the net-
works to the global maximum. The situation changes for
larger Kini. For networks with N = 50 the evolutionary
process without neutral mutations becomes more efficient
at Kini = 6, for networks with N = 100 this happens al-
ready at Kini = 5. This means that at these points the
number of attempted mutations increases drastically for
simulations with neutral mutations while it decreases for
simulations without neutral mutations. Apparently, allow-
ing the network to undergo neutral mutations drives it into
regions in network space where there are more neutral di-
rections and less uphill neighbors.
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Fig. 4. The percentage of neutral mutations among the ac-
cepted mutations until the networks reach 100% fitness.
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sured in accepted mutations) for different initial connectivities
and different network sizes.

4.3 Neutral evolution

When looking at the number of neutral mutations that
occur until the networks reach maximum fitness, one can
see that their percentage decreases with increasing initial
K (Fig. 4). Furthermore, the percentage of neutral mu-
tations is larger for larger networks. After reaching maxi-
mum fitness, the adaptive walk continues via neutral mu-
tations. Thus the global maximum of the fitness landscape
is not an isolated point from which every path leads down-
hill, but a far-ranging plateau, on which the networks can
move in many directions. Figure 5 shows the evolution of
the average connectivity over 100 000 evolutionary steps
for different network sizes and initial connectivities. (The
initial connectivity is actually of little importance as the
networks “forget” about it after a few thousand muta-
tions.) It appears that the networks perform a random
walk through K-space and can reach in principle every
possible K value. The adaptive walk could go on forever
if there were no stopping conditions.
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Fig. 6. The K values of six different network realizations
with two different probability distributions for the mutations
as function of time. The horizontal lines indicated the time
average of K for each curve.

At the end of the adaptive walk the in-degree and out-
degree distributions are either both Poissonian, or the in-
degree distribution is a delta function because all nodes
have reached the maximum possible K.

4.4 Variations

This section deals with variations of the basic algorithm.
The variations concern the probabilities for the occurrence
of the different mutations, the fitness criterion and the ini-
tial distribution of K values. At the end of this section,
the evolution of random Boolean networks with all possi-
ble Boolean functions is considered for comparison.

4.4.1 Bias to deletion

We modified the probability distributions for mutations
such that the probability to add a connection was smaller
than the probability to delete a connection. This leads
to the stabilization of the networks at a certain K value.
In Figure 6 we show the K value over a time period of
100 000 mutations. For the curves with the higher aver-
age K the probability to delete a link was 0.275 and the
probability to add a link was 0.225. For the curves with
the lower average K these values were 0.375 and 0.125 re-
spectively. The probabilities for the two other mutations
remained unchanged. During the adaptive walk the con-
nectivity fluctuates around a mean value that appears
to be independent of network size. Assuming that the
networks have reached the stationary state after about
10 000 accepted mutations, the mean K values of the up-
per curves (smaller bias) are found to be 4.07, 4.17 and
4.11 for network sizes of N = 20, 50 and 70 respectively,
with ∆K/〈K〉 being 0.27, 0.17 and 0.13. The lower curves
(larger bias) have mean values of 〈K〉 = 1.49, 1.50 and
1.51 respectively with ∆K/〈K〉 = 0.18, 0.12 and 0.11,
which is of the same order as for smaller bias.
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Fig. 7. Time evolution of K over 200 000 mutations for four
different realizations with the restriction that attractor length
must not become longer.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  20000  40000  60000  80000  100000

K

number of accepted mutations

N = 30, Kini = 1

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  20000  40000  60000  80000  100000

K

number of accepted mutations

N = 30, Kini = 1
N = 50, Kini = 1

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  20000  40000  60000  80000  100000

K

number of accepted mutations

N = 30, Kini = 1
N = 50, Kini = 1
N = 70, Kini = 1

Fig. 8. Time evolution of K over 100 000 mutations for three
different realizations with the restriction that the way back to
the attractor after a perturbation should never be longer than
two transient states.

4.4.2 Stricter robustness criteria

For higher K values, the lengths of the attractors and of
the paths back to the attractor after a perturbation are
longer. We therefore explored two stricter robustness re-
quirements. First, we accepted only mutations for which
the attractor lengths did not grow. Second, we included
in the fitness criterion the condition that there should be
at most two transient states on the way back to the at-
tractor. The first modification leads to an attractor of
length 1 within a few evolutionary steps, which corre-
sponds to a fixed point. Even with this restriction the
networks manage to reach every possible K value during
evolution (Fig. 7). The evolution of the K value for the
second modification is shown in Figure 8. The K value
shows again large fluctuations in time. The effect of both
constraints is similar: the fluctuations of K appear smaller
than before (cf. Fig. 5), and the attractors become more
stable in the sense that more initial states lead to the same
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Fig. 9. Percentage of accepted mutations for networks with
N = 50 and a uniform distribution of initial K values for
simulations with (open symbols) and without (filled symbols)
neutral mutations. For comparison the corresponding curves
for fixed initial K values from Figure 3 are shown again.

attractor (see Sect. 5.1). The two constraints appear to
cause each other: when shorter attractors are selected for,
the number of time steps needed to return to the attractor
also become fewer and vice versa.

From a further comparison of Figures 5, 7 and 8 one
can draw the conclusion that if the networks exceed a
certain K value, mutations that increase K further are
more efficient.

4.4.3 Uniform distribution of initial K values

The simulations considered so far started with networks
where all nodes had the same number of inputs. As the
path of the networks to the global fitness maximum de-
pends crucially on the initial connectivity, we also studied
adaptive walks where the K values were uniformly dis-
tributed between 1 and Kmax in the beginning. We did
simulations with N = 50 and Kmax = 5, 7, 9 and 10, so
that the mean initial K was 3, 4, 5 and 5.5 respectively.
Compared to the earlier simulations, the networks need
more mutations to reach the global maximum. These are
still relatively few mutations, so that the mean connectiv-
ity does not change much. In Figure 9 one can see that for
simulations where K values were uniformly distributed in
the beginning, more mutations are accepted if neutral mu-
tations are allowed. Also the percentage of neutral muta-
tions among the accepted mutations is higher (not shown).
In contrast, during simulations without neutral mutations
it was much more difficult to find mutations that are ac-
cepted. We conclude that networks with a broader initial
distribution of K values find more neutral directions in
the fitness landscape at the cost of having a longer path
to 100% fitness. As expected, the initial K distribution
does not affect the long term evolution after networks have
reached 100% fitness.
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Fig. 10. Time evolution of K over 100 000 mutational steps for
networks with all Boolean functions. The K value fluctuates
around a mean of K = 3.95 for all network sizes. With the
restriction of at most two transient states after perturbation,
this value decreases to K = 3.10. The horizontal lines show
these average K values.

4.4.4 All Boolean functions

If not only canalizing functions but all Boolean functions
are allowed, the K value fluctuates after about 10 000 mu-
tations around a mean value that is independent of the
network size (Fig. 10). This value is 3.95±0.05 for N = 20,
3.94 ± 0.03 for N = 50 and 3.95 ± 0.02 for N = 100.
When additionally the above-mentioned constraint of at
most two transient states is introduced, the average K
value shrinks to 3.11±0.04 for N = 20 and 3.10±0.03 for
N = 50. We also found that the proportion of the different
Boolean functions does not change during evolution, and
therefore the networks still have K values characteristic
of the chaotic regime.

5 Discussion

5.1 Robustness and chaos

As stated in the previous section, the networks that were
evolved using all Boolean functions have K values char-
acteristic of the chaotic regime. The networks with only
canalizing functions have K values higher than Kc most
of the time. In both cases, the networks show features of
real genetic networks: they are stable and evolvable. In
order to understand how the networks can be so robust in
spite of high K values, we carried out some investigations
on the evolved networks. First, we tested the robustness r
of the evolved networks; r is the probability that the state
of a node changes when one of its inputs changes [19]. The
evolved networks are not more robust than the initial net-
works according to this criterion. Second, we examined
the degree of canalization of the evolved networks, but
neither the number of canalizing inputs nor the degree of
nesting of the canalizing functions differ from a random
distribution. Finally, we examined the state space of the
evolved networks to study the stability of the attractors.

For networks with N = 20, we explored the entire state
space, for networks with higher N we considered 10 000 or
100 000 initial states. We found that the evolved networks
have an attractor that attracts at least 90% of all ini-
tial states. (The same holds for networks with all Boolean
functions.) This means that most perturbations, no mat-
ter how far away from the attractor they carry the net-
work, have to lead back to the attractor eventually. The
networks evolved with the stricter robustness criteria are
even more stable in this sense.

The selection criterion used in this paper leads to net-
works that show stable behavior under perturbations, and
at the same time they display properties of chaotic net-
works. The relatively long attractors found for networks
evolved with the original selection criterion are typical for
the chaotic or the critical regime. We evaluated the activ-
ity of the nodes on the attractors and found that approx-
imately half of the nodes are blinking, which means that
only half of the nodes are frozen. That is also a character-
istic of chaotic networks.

5.2 Earlier simulations of network evolution

Let us compare some of our results with results from ear-
lier simulations of the evolution of Boolean networks (see
Sect. 1). In [8], networks never reach maximum fitness.
In contrast, the networks in our simulations always reach
maximum fitness even under various constraints. This dif-
ference may be due to the fundamentally different fit-
ness criteria. In [8], the fitness criterion imposes a “goal”
on evolution. Another possible explanation might be the
larger variety of mutations in our simulations. In [8], K did
not change. The work with which our study overlaps most
is [9,10], where the evolution of Boolean networks was
performed by selecting for robustness, although in those
papers the robustness is phenotypic robustness against
mutations. Similarly to what we found, the evolutionary
processes in [9,10] lead to networks that do not show more
chaos when the connectivity grows, but the evolved net-
works have shorter attractors than the initial networks,
while approximately half of the nodes are frozen.

6 Summary

In this paper we analyzed the fitness landscape of a genetic
regulatory network model. We showed that the networks
can reach the maximum possible fitness value when the
selection criterion is robustness of attractors against per-
turbations. Moreover the networks need only a few evolu-
tionary steps to arrive at this maximum. The number of
steps seems to be less for networks starting in the frozen
or in the chaotic phase than for initially critical networks.
Everywhere in the fitness landscape there exist paths go-
ing uphill towards the plateau of maximum fitness. When
neutral mutations are allowed, the adaptive walk becomes
more efficient when the initial connectivity is small. The
plateau of maximum fitness spans the network space, and
networks that have reached the fitness maximum can move
through this plateau by neutral evolution. Over long evo-
lutionary time scales, none of the mutations is favored.
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This means that on average the proportion of a certain
type of mutation among the accepted mutations is the
same as its proportion among the attempted mutations.
The stability of the evolved networks is due to a state
space containing an attractor with a huge basin that com-
prises at least 90% of the possible initial states.

Applied to real genetic networks, our results would
mean that their attractors are already relatively stable be-
cause of the canalizing functions and that they can become
even more stable within short evolutionary time periods
if selection is favoring robustness against perturbations.
After the networks have reached high fitness values, they
easily continue to evolve in different directions without
having to reduce their fitness. That is, these networks are
very evolvable and nevertheless stable without being re-
stricted neither to small connectivities nor to special mu-
tations. The notion introduced by S. Kauffman that such
networks should be near a critical point, that is, at the
edge of chaos, appears to be not fully appropriate. Our
evolved networks, in addition to being robust and evolv-
able, share otherwise many features with chaotic networks.
The simple classification of network dynamics into frozen,
critical, and chaotic, might need to be reconsidered in the
light of the different types of dynamical behaviors that
can be seen in evolved networks.

We thank Tamara Mihaljev for useful discussions.
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